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Abstract 

Preventing the materialization of climate change is one of the 
main challenges of our time. The involvement of the financial 
sector is a fundamental pillar in this task, which has led to the 
emergence of a new field in the literature, climate finance. In 
turn, the use of Machine Learning (ML) as a tool to analyze 
climate finance is on the rise, due to the need to use big data 
to collect new climate-related information and model com-
plex non-linear relationships. Considering the potential for 
the use of ML in climate finance and the proliferation of arti-
cles in this field, we propose a survey of the academic litera-
ture to assess how ML is enabling climate finance to scale up. 
The contribution of this paper is threefold. First, we do a sys-
tematic search in three scientific databases to assemble a cor-
pus of relevant studies. Using topic modelling (Latent Di-
richlet Allocation) we uncover representative thematic clus-
ters. This allows us to statistically identify three overarching 
research areas, and seven granular application domains where 
ML is playing a significant role in climate finance literature: 
physical risks (natural hazards, biodiversity and agricultural 
risk), transition risks (carbon markets and energy econom-
ics), and corporate and social responsibility (ESG factors & 
investing, and climate data). Secondly, we do an analysis 
highlighting publication trends, and a breakdown of ML 
methods applied; and thirdly, we provide a literature review 
of each topic, pointing out emerging research directions. 

1. Introduction  

The relationship between economic and environmental sci-

ences has increasingly attracted the attention of economic 

researchers and professionals (Carvalho et al. 2016). The in-

ception of the field, initially known as resource economics, 

is usually linked to the seminal work of Nobel Laureate Wil-

liam Nordhaus, who modelled the interactions between cli-

mate change and the economy. From there, more specifi-

cally on finance, early work on sustainability mainly ad-

                                                 
1 Notably, we reiterate that this sudden interest on the topic exploded only 
some years ago. As evidence, the three top finance journals (Journal of Fi-
nance, Journal of Financial Economics and Review of Financial Studies) 
did not publish a single article related to climate finance between January 
1998 and June 2015, as indicated by Diaz-Rainey et al. (2017). 

dressed concerns on corporate governance and social invest-

ing (Capelle‐Blancard & Monjon, 2012), not been until 

years later when more articles were produced on a broader 

set of problems related to climate. Interestingly, a change in 

the publication regime is observable from the year 2015 on-

wards (Malhotra & Thakur 2020), which might be associ-

ated with the signing of the Paris Agreement (UNFCCC, 

2015), as suggested by Cunha et al. (2021). The agreement 

followed a warning by environmental scientists back in 

2014 with the publication of the fifth assessment report 

(AR5), which defined the anthropogenic nature of climate 

change from unabated greenhouse gas emissions. This 

emergency call has been corroborated by the sixth assess-

ment report AR6 (2022) which illustrates the lag still exist-

ing on policy implementations to effectively limit global 

temperature increase to well below 2°C by the end of the 

century. This scientific evidence is pushing the field of cli-

mate finance as a priority and triggering an impressive 

growth in publications. In fact, Liang & Renneboog (2021) 

note that despite its relatively late advent, the literature has 

been growing exponentially and evolving towards various 

topics.1 As evidence, high quality economic journals now 

dedicate special issues to climate and sustainable finance 

topics.2  This new prolific academic work has also been ac-

companied by international financial regulators and super-

visors who have been actively working recently within and 

across institutions to scale up climate finance to develop a 

new financial architecture that properly incorporates and 

manages climate-related opportunities and risks. Just as an 

example, the European Central Bank set up in 2021 a dedi-

cated ECB Climate Center and the Federal Reserve joined 

the Network for Greening the Financial System (NGFS) in 

late 2020. 

2 For instance, the Review of Financial Studies, in March 2020. Also, the-
matic journals on environmental, climate and resource economics appear 
on top rankings like IDEAS/RePEc. 



 

 

One characteristic of climate finance literature is how frag-

mented the research is. This is not only a bibliographic con-

cern, as it also makes it difficult to join efforts from different 

academic profiles in order to develop specific research. In a 

literature review performed by Cunha et al. (2021) the au-

thors conclude that it “makes it difficult to identify what con-

stitutes the field and what differentiates it from traditional 

finance”, due to the poor theorization of the concept of “sus-

tainability”, an opinion shared by several others like Ca-

pelle‐Blancard & Monjon (2012), Zhang et al. (2019), Talan 

& Sharma (2019), Liang & Renneboog (2021) and Giglio et 

al. (2021). This calls for a precautionary need to define the 

scope of our survey on climate finance. We will rely on the 

definition provided by Giglio et al. (2021) as “the tools of 

financial economics designed for valuing and managing risk 

which can help society assess and respond to climate 

change”. Although we will use from now on the term cli-

mate finance, we acknowledge that three concepts are used 

indistinctively in the academic literature, namely green fi-

nance, climate finance and carbon finance (Zhang et al., 

2019).3 

 

Another characteristic of climate finance as a field is the dif-

ficulties researchers have to face in order to perform a solid 

empirical analysis. To name some of them: the growing ac-

cess to climate data, though still of limited reliability, and 

the statistical complexity to model the non-linear behavior 

of climate change. These kind of problems create profound 

mathematical challenges for making inference about the real 

climate (Stephenson et al. 2012) and its relationship with the 

economy. In fact, Diaz-Rainey et al. (2017) conclude that 

methodological constraints could explain previous lack of 

climate finance research in top finance and business jour-

nals.  Additionally, classical problems like the presence of 

endogeneity is cornerstone in climate finance, as the impact 

of climate on the economy is two-folded due to the existence 

of a feedback loop. This has been widely recognized by pol-

icy makers (European Commission, 2020), academics 

(Gourdel et al. 2022) and financial supervisors (NGFS 2019, 

NGFS 2021). At the same time all these features justify the 

recourse to ML from researchers and experts as this technol-

ogy is particularly well suited to deal with these problems. 

Taking into account the proliferation of articles in climate 

finance, the increased use of ML, and the fragmentation of 

the literature, in this article we propose a systematic review 

of studies that rely on this technology to solve climate fi-

nance problems. To face the challenge of heterogeneity of 

topics within the field, this survey leverages on Natural Lan-

guage Processing (NLP), in particular we implement a La-

tent Dirichlet Allocation (LDA) model, to statistically un-

cover latent topics which we are then able to successfully 

                                                 
3 Similarly, we will leave out of our scope any work not touching upon 
climate change, and exclusively focusing on social topics, like corporate 
governance, impact investing, social investing and financial inclusion, 
which would fall under the label of sustainable finance. Though, a limita-

identify as relevant application domains. To the best of our 

knowledge this is the first survey that thoroughly covers 

ML-based studies in climate finance, building a unique set 

of papers from different public databases, such as Web of 

Science, Google Scholar and Dimensions.ai. Notably, we 

make an effort to map which ML methods are mostly used 

by each climate finance topic, aiming to facilitate a profound 

understanding of how ML can enable climate finance to 

grow as a research field. This could be useful for future re-

searchers interested on joining this academic debate, as well 

as policy makers looking for ways to better design climate 

finance instruments and policies. Indeed, the value of aca-

demic research in the overall innovation process has been 

widely investigated (see for instance Quatraro & Scandura 

2019), and in climate finance this has been recently recog-

nized in the last Conference of the Parts (COP26), where it 

has been stated that AI and ML can play a key role in im-

portant climate-related topics like prediction, mitigation, 

and adaptation, in ways we cannot afford to ignore (Clutton-

Brock et al. 2021). 

 

Importantly, our survey results support the relevance of ML 

as a driver of the publication trend in climate finance4, a 

view that is starting to gain traction within economic and 

financial journals (e.g.: Musleh Al-Sartawi et al. 2022). It is 

also aligned with the nascent concern from financial author-

ities on understanding the potential application of new tech-

nologies to resolve operational problems identified in cli-

mate finance. We refer for example to the G20-BIS Tech-

sprint 2021, a race horse between private sector players lev-

eraging technologies to solve a series of pre-identified prob-

lem statements (climate data collection, analysis of climate-

related financial risks, and better connecting projects with 

investors). On this same effort, we can also highlight the 

global Fintech Hackcelerator for a greener financial system 

sponsored in 2021 by the Monetary Authority of Singapore, 

or the 2021 Green Fintech Challenge, hosted by the Federal 

Conduct Authority in UK. Significantly, with a longer term 

view, the Bank of International Settlements has created a se-

ries of Innovation Hubs (BISIH) worldwide, and a Network 

(BISIN) who are experimenting and monitoring new devel-

opments in climate finance innovation. Finally, the success 

of ML applied to climate finance issues is also corroborated 

by a new wave of projects and market-driven solutions 

which are flourishing in the private sector, giving birth to a 

new market segment currently labelled as “green fintechs” 

(Machiavello & Siri 2020). 

  

The paper is organized as follows. Section 2 explores the 

role of ML in climate finance. Section 3 explains the meth-

odology of the survey based on topic modelling. Section 4 

tion exists as some studies do not disentangle environmental from govern-
ance and social factors, for instance, those focusing on the impact of ESG 
scores on corporate performance. In this sense, some work from sustainable 
finance will be included. 
4 Results shown in the Appendix. 



 

 

details the findings from the clustering, and analysis of pub-

lications. Section 5 includes some analysis on publication 

trends, and Section 6 concludes. 

2. The role of Machine Learning 

 in Climate Finance 

According to Athey (2018), ML is a field that develops al-

gorithms designed to be applied to datasets, with the main 

areas of focus being prediction, classification, and clustering 

or data processing (e.g.: dimensionality reduction).  While 

conventional statistical and econometric techniques, such as 

regression, often work well, there are idiosyncratic method-

ological problem that may benefit from using different tools. 

This is particularly relevant in climate-related issues. 

 

First, the usual large size of the datasets involved in climate 

finance may require more powerful statistical manipulation 

tools. In recent years, the quantity and granularity of eco-

nomic data in general has improved dramatically. The good 

news is that the sudden explosion of micro-level datasets of-

fers an unparalleled insight into the inner workings of the 

economy and financial systems. The bad news is that da-

tasets are increasingly more complex to deal with (López de 

Prado, 2019). As an example with climate finance implica-

tions we can point just to the high variance among the tem-

perature predictions of the 20 global climate models, from 

various laboratories around the world, that inform the Inter-

governmental Panel on Climate Change (IPCC), with data 

for over 100 years (Monteleoni et al. 2011). In fact, some of 

the most interesting datasets in climate finance are not only 

high-dimensional, but also unstructured, like news articles, 

voice recordings or satellite images, which along with the 

complexity of the phenomena they measure, means that 

many of these datasets are beyond the grasp of econometric 

analysis. 

 

Second, big datasets may allow for more flexible relation-

ships between the variables than simple linear models. It has 

been largely recognized that ML techniques such as decision 

trees, support vector machines, neural nets, deep learning, 

and so on, may allow for more effective ways to model com-

plex financial and economic relationships (Varian 2014, 

Athey 2018, Athey & Imbens 2019).   The key advantage 

and one common feature of many ML methods is that they 

use data driven model selection, treating the data-generating 

process (DGP) as unknown, allowing researches to deal 

with large datasets without imposing restrictive assump-

tions. On the other hand, as described by Breiman (2001), 

traditional model-driven statistical community assumes that 

the data are generated by a given stochastic process, being 

able to better understand the relationship between the varia-

bles.  

As very illustratively explained by Huntingford et al. 

(2019), and Castle & Hendry (2022), shared characteristics 

of financial and climate time series make ML tools appro-

priate for studying many aspects of observational climate-

change data and its economic impact. For instance, green-

house gas emissions are a major cause of climate change as 

they accumulate in the atmosphere. As these emissions are 

currently mainly due to economic activity, financial and cli-

mate time series have commonalities, including considera-

ble inertia, stochastic trends, possible nonlinearities, omitted 

variables and abrupt distributional shifts. Moreover, both 

disciplines lack complete knowledge of their respective 

DGPs, so data-driven model search allowing for shifting 

distributions is important, and ML offers a rigorous route to 

analyzing such complex data. The appeal of ML is that it 

manages to uncover generalizable patterns. In fact, the suc-

cess of ML is largely due to its ability to discover complex 

relationships that were not specified in advance. It manages 

to fit complex and very flexible functional forms to the data 

without simply overfitting, that work well out-of-sample 

(Mullainathan & Spiess, 2017). 

 

Importantly in climate finance, ML offers us the opportunity 

to explain relationships that have the potential for huge so-

cietal impact (Hoepner et al. 2021). Indeed, the effects of 

climate change are increasingly visible.  Storms, droughts, 

fires, and flooding have become stronger and more frequent. 

Global ecosystems are changing, including the natural re-

sources and agriculture on which humanity depends. Yet, 

year after year, these emissions rise, giving only a pause dur-

ing Covid-19 lockdown. In the well-known “Tragedy of the 

Horizons”, Mark Carney (2015) showed us that the environ-

mental impact of climate change translates into substantial 

financial risks to global assets measured in the trillions of 

dollars. However, it is hard to forecast where, how, or when 

climate change will impact the stock price of a given com-

pany, or even the debt of an entire country. Financial short-

termism fails to incentivize the prediction of medium or 

long-term risks, which include most climate change-related 

exposures such as physical impact on assets. As we will see, 

ML can help us to close this “intertemporal” gap. A very 

illustrative example is given by researchers from the Quebec 

AI Institute (2021), who warned during the last COP26 that 

preventing climate–related catastrophic consequences will 

require changes in both policy-making and individual be-

haviors. However, many cognitive biases (like abstraction 

and myopic term discount) might prevent us from taking ac-

tion today. To tackle this market failure, they developed 

“This Climate does not Exist”, a research project that har-

ness ML (in particular Generative Adversarial Networks, or 

GANs) to create images of personalized climate impacts 

which will be especially powerful in overcoming the barri-

ers to action and raising climate change awareness.  



 

 

On measuring climate awareness, ML and alternative data 

are playing a key role themselves. For instance, Sluban et al. 

(2015), Cody et al. (2015) and Shangguan et al. (2021), em-

ploy different ML algorithms to analyze the sentiment to-

ward selected topics related to the environmental issues in 

Twitter. Drawing on large-scale computational data and ML 

methods, Farrell (2016) shows that media organizations 

with corporate funding were more likely to have written and 

disseminated texts meant to polarize the climate change de-

bate. On the same front, Stecula & Merkley (2019) use a 

Support Vector Machine (SVM) to identify economic, con-

servative ideological, and uncertainty frames in the press 

coverage of climate change in some of the most influential 

US media sources. Lynam (2016) explores social adaptation 

to climate change from a set of micronarratives collected in 

Australia, using topic modeling and Bayesian networks, and 

Gaur et al. (2021) evaluates the inclination of Asian youth 

regarding the achievement of the SDGs, building on a Ran-

dom Forest model to capture their opinions about a sustain-

able future. But what about financial markets’ view climate 

change? Interestingly, to answer this question Schlenker & 

Taylor (2019) rely on ML as well, to pick the optimal model 

to estimate the market expectation on climate change. They 

analyze prices of financial products whose payouts are tied 

to future weather outcomes, and their results suggest that 

trends in weather markets follow climate model predictions, 

and are not based on shorter-term variation in observed 

weather station data. This promising result would indicate 

that when money is at stake, agents are accurately anticipat-

ing warming trends in line with the scientific consensus of 

climate models.  

 

But the set of topics in climate finance where ML is being 

utilized is much broader. Rolnick et al. (2022) show how 

ML can contribute, for instance, in climate investment, ap-

plying deep learning both for tilting portfolio selection to-

wards low carbon emitting corporates, and investment tim-

ing. In fact, as concluded by the authors, this climate-aligned 

investment strategy is creating major shifts in certain sectors 

of the market towards renewable energy alternatives, which 

are seen as having a greater growth potential than traditional 

fossil fuels. This is another example of the high impact of 

climate-related problems. Due to dependencies from several 

nations on Russian oil and gas, the green transition has 

gained a further sense of emergency, having its implications 

on the future regulation of energy markets (e.g.: Plan Re-

PowerEurope). Furthermore, we could further elaborate on 

the overlapping issue between green public policies and dig-

italization. For instance, Gailhofer et al. (2021) specifically 

discuss about the role of AI in the European Green Deal, 

Bag et al. (2021) study the role of public institutions on the 

adoption of big data analytics and AI technology, and how 

this affects sustainable manufacturing and circular econ-

omy, and Plakandaras et al. (2019) use ML techniques to 

model climate change as a geopolitical risk, forecasting its 

impact on several financial assets. 

 

As a conclusion, the emerging use of AI and ML is disrupt-

ing and transforming the financial industry (Wall, 2018). 

Climate finance is a particular area where innovation is 

growing fast and having big impact, as acknowledged by ac-

ademics, policy makers, and market participants. As an ex-

ample, in a position paper Kaack et al. (2020) hope that re-

cent breakthroughs in ML can help us get closer to achieving 

the UN SDGs, and Kumar et al. (2021) think that new-age 

technologies applied to sustainability can make significant 

contributions to the green transition. Both Al-Sartawi et al. 

(2021) and Avgouleas (2021) suggest that cutting-edge fi-

nancial technology encompassing AI, ML and blockchain 

can be critical in terms of boosting sustainable finance. And 

for Inampudi & Macpherson (2020) there is a great potential 

for AI to contribute towards global economic activity, espe-

cially ESG investing. In fact, the digitalization of climate 

finance has led to the birth of a FinTech sector that com-

prises technology-backed innovative business models for fi-

nance, something that has been given the name of “Green 

Fintech” (see GDFA 2022 for a taxonomy devoted to clas-

sify market-driven green fintech business solutions). 

 

Finally, we feel responsibly obliged to bring to this discus-

sion the other side of the impact of ML on climate change, 

as well. New technologies do not only bring us opportuni-

ties. Kaack et al. (2020) explain ways in which AI and ML 

can be detrimental to efforts addressing climate change, 

warning of those uses that might harm our planet. AI or AI-

driven technologies can become pollutants and net emitters 

of greenhouse emissions, depending on the types of applica-

tions and the circumstances of their deployment. For exam-

ple, remote sensing algorithms for satellite image analysis 

can be used to gather information on agricultural productiv-

ity, but can also be used to accelerate oil and gas exploration. 

Self-driving cars can make driving more efficient, but they 

could also increase the amount people drive. And finally, 

ML include computationally expensive programming, 

which is an energy intensive activity. This final concern has 

minted the term “Green AI”, referring to responsible and 

low carbon intensive coding and good practices relating the 

training and deployment of complex algorithms in the aca-

demic industry (e.g.: Strubell et al. 2019, or Hershcovich et 

al. 2022). We include a dedicated literature review on this 

topic in the Appendix. 

3. Methodology 

We adopt and implement the Scientific Procedures and Ra-

tionales for Systematic Literature Reviews (SPAR-4-SLR) 



 

 

protocol, which consists of three major stages, namely as-

sembling, arranging, and assessing of articles (Paul et al., 

2021).  

 

Our final collection of documents adds up to 217 research 

articles, from which we extract the abstracts, which will 

comprise the sample of texts (corpus) in our study. Our goal 

will be to discover the hidden or latent (unobservable) topics 

in the corpus of documents (observable), using a ML-tech-

nique, Latent Dirichlet Allocation (Blei et al. 2003). This 

will help us understand documents analyzing the presence 

of words. Often the term “topic” is used in a technical, sta-

tistical sense, but ultimately the last phase of any topic mod-

eling approach involves expert analysis to uncover through 

inspection a more usual theme that aligns with each topic, 

allowing to name each of them with a more economic mean-

ingful name. In addition, we aim to rank the topics according 

to their prevalence (Sievert & Shirley, 2014), which we find 

to be a convenient visualization tool for the exploration and 

presentations of the topics. 

 

Data collection 
To assemble the corpus of articles on ML-based climate fi-

nance, we identified relevant keywords relating to climate 

finance from a preliminary assessment of literature reviews 

on both sustainable (carbon, or green) finance, energy eco-

nomics and ML in finance (i.e.: Kumar et al. 2021, Ghod-

dusi et al. 2019, and Aziz et al. 2019). 5 Following the iden-

tification of these words in climate finance and ML (this led 

to a combination of 15 keywords6) we conducted a search 

for articles using an advanced search string in the category 

ALL (“article title, abstract, and keywords”), and AB (“ab-

stract only”) on Google Scholar, Web of Science, and Di-

mensions.ai7, as shown in Expression 1. The start date was 

selected to be 1st January 1999, until the present day, being 

the last update as of April 22nd, 2022. 

 

Expression 1 

ALL= ("climate change" OR "ESG" OR "sustainable fi-

nance" OR "green finance" OR "climate finance") AND AB 

= (finance OR "financial market*" OR bond* OR invest-

ment* OR corporate* OR funding OR financing) AND 

ALL= ("lasso" OR "random forest*" OR "extreme gradient" 

OR "xgboost" OR CART OR "deep learning" OR "neural 

network" OR "machine learning") 

 

The data was collected The data was collected using a “Hu-

man-In-the-Loop” (HIL) approach. It consists of proceeding 

                                                 
5 After determining a reasonable combination of words we experimented 
with some other variations of terms for both ML and climate change, find-
ing no meaningful articles variation, suggesting we got a good convergence 
on a suitable corpus of identified research. 
6 The symbol * is used to capture singular and plural forms of the words. 

to a purely automated data collection with an ex-post vali-

dation based on the field expertise. For instance, a total of 

45 search pages (showing 10 items each) were screened in 

Google Scholar and the process of checking potential dupli-

cates between different databases was performed by an ex-

pert using the software OneNote. Contrary to other reviews, 

we aim to focus on a narrow definition of ML in climate 

finance. This means our results should be familiar to econo-

mists and not relying too heavily on environmental or engi-

neering science with no connection of the research question 

or conclusion to an economic of finance theme or discourse. 
8 It is important to highlight that our approach, incorporating 

a screening phase in Google Scholar, which allows for a 

richer understanding of a research field that is growing so 

fast, and therefore so much relevant research is still in work-

ing paper status, waiting to be published by peer-reviewed 

journals, and therefore do not appear in results from more 

standardized databases like WoS or D.AI yet. 

 

Topic modelling 
Topic modeling assumes a person approaches writing a doc-

ument with a collection of topics in mind and the words cho-

sen will represent this topic mixture. For instance, a climate 

finance researcher applying ML to solve a problem will, for 

example, write a paper with a topic mixture of 50% climate 

change, 30% finance, and 20% ML modelling. The key task 

for the topic modeling researcher is therefore to reverse en-

gineer the latent topics from the observed words. 

Currently, the most widely accepted approach for topic 

modeling is Latent Dirichlet Allocation (LDA) developed 

by Blei et al. (2003). The key practical advantage of LDA is 

that it allows documents to be a mixture of different topics, 

while topics are presented as a mixture of words. This fits 

the reality observed in climate finance studies, since differ-

ent topics can partially overlap within a document. We apply 

the Gensim implementation of LDA in Python (Rehurek and 

Sojka 2010). The procedure for extracting the topics consist 

of a variety of steps required for training, tuning, and apply-

ing the resulting LDA model to the corpus. We briefly de-

scribe the most important ones: 

 

A necessary first step in topic modeling is processing the 

corpus of documents by tokenizing each document into a 

collection of their individual words where order is unim-

portant (i.e.: each document is treated as a “bag of words”). 

Then, “stop words” that have no topic context (such as 

“and”, “of”, “the”), are removed, as well as common terms 

that are highly repeated in the corpus, which we identify be-

cause they appear in more than half of the documents, or rare 

7 As a robustness check we verified that all the studies tagged as “climate 
finance and economics” in the expert network hosted in https://www.cli-
matechange.ai/  were included. 
8 This was actually a drawback we saw from other related literature reviews 
like Warin & Stojkov (2021), or Kumar et al. (2021). 



 

 

terms for which we set a threshold of being in less than two 

documents. We deem that both categories of terms contain 

little meaning to contribute to a relevant topic. Remaining 

words in a document are stemmed to generate the words’ 

root, and accurately capture unique terms usage. This means 

suffixes are removed to create common stem terms, e.g.: fi-

nance, financial and finances might be reduced to the com-

mon “financ” root.  In theory, a token can have any number 

of words (usually monograms are used, but we could have 

bi- and trigrams). For simplicity, we keep our analysis to 

single word tokens as we find that it allows us to easily label 

the topics at the final stage. 

 

After processing the data, we count with Ὀ documents that 

together contain ὔ unique tokens that we can represent by 

an ὔ  Ὀ matrix ὡ with entries ύȟ that are the number 

of occurrences of token ὲ in document Ὠ. Thus, the total 

number of tokens in document Ὠ  is  ὔ  В ύȟ. The 

LDA model consists of two matrices, ‍ὔ ὑ  and —ὑ
Ὀ , where ὑ is the total number of topics. For topic Ὧ, the 

vector ‍ contains the ὔ token weights, which act as the 

probabilities PὲȿὯ that the token ὲ contribute to a docu-

ment’s bag of words, conditional on the topic Ὧ contributing 

to the document. That is, PὲὯ ‍ȟ , i.e.: the weight of 

token ὲ in topic Ὧ . Therefore, В ‍ȟ ρ. For document 

Ὠ, the vector — contains the ὑ topic weights – which act as 

the probabilities PὯȿὨ that the topic Ὧ appear in the docu-

ment. Thus, P ὯὨ — , i.e.: the weight of topic Ὧ in 

document Ὠ . Similarly, В —ȟ ρ. When these proba-

bilities are significant, we may say that a topic Ὧ is relevant 

in document Ὠ. Finally, this setting allows us to decompose 

in Equation 1 the probability of a token ὲ in a document Ὠ 

as (Hofmann 2001): 

 

Eq. 1 

╟▪ȿ▀ ╟▪ȿ▓Ͻ╟▓ȿ▀ ‍ȟϽ—ȟ

╚

▓

╚

▓

 

 

 

Topic modeling involves reducing the dimensions of these 

matrices to end up with the same number of rows (docu-

ments) but a restricted number of columns which represent 

the topics. To this purpose LDA assumes a particular Di-

richlet distribution that can be used to produce probability 

vectors ‍ and —, that allow an assumption to be made 

about how topics are distributed across tokens and docu-

ments. Using two external inputs, ‌ and ‍ as Dirichlet pri-

ors, we can determine the generative process in the LDA. ‌ 

is a parameter that determines — or per-document topic dis-

tribution, and ‍ is a parameter that determines ‍ or per-

                                                 
9 The process for LDA is well described in Blei (2012) and in more 
technical detail in Blei et al. (2003). 

topic token distribution. The LDA posteriors are a result of 

the trade-off between two inherently conflicting goals. 

Firstly, that only a relatively small number of topics are ex-

pected in a well-written document, and secondly that only 

high probability should be assigned to a small number of to-

kens that belong to highly informative topics. The trade-off 

exists because if we assign, for instance, a single topic to a 

single document, thus succeeding at the first goal, the sec-

ond goal becomes difficult to achieve because all tokens in 

the document must have a relatively high probability of be-

longing to that topic. The estimation of the LDA model re-

quires a Bayesian updating from its initial semi-random al-

location of topics to tokens and documents, to converge to a 

probabilistic distribution of topics across documents. Tech-

nically, the process will be completed when we find matri-

ces ‍ȟ and —ȟ that most likely have produced the ob-

served data ὡ. 9 

4. Survey Results 

As we mentioned, LDA becomes a useful approach to clus-

ter similar documents together from a large disparate litera-

ture, as it is the case of ML-based climate finance. To select 

the number of topics for our final model, multiple models 

with different topic numbers were produced and relevance 

scores were compared, following Equation 2. 

 

A challenge with topic modeling is that topics that make 

ML-sense do not necessarily make human sense. Therefore, 

in order to label the resulting topics, we do a qualitative 

check with human expert judgement to ensure that the words 

determined for each topic make sense within the existing cli-

mate finance literature. When the LDA model is estimated, 

we inspect the topics in three ways: we look at the tokens 

with the highest probability per topic (‍); we sample Ὠ
ςπ documents and check whether the highest probability 

—ȟ of each document Ὠ belonging to a topic Ὧ matches the 

thematic area identified by a human expert in advance (who 

read the abstract)10; and finally we look at the tokens ranked 

according to topic relevance as defined by Sievert & Shirley 

(2014). The relevance ὶ of token ὲ to topic Ὧ, given a tuning 

parameter ‗ is given in by: 

 

Eq. 2 

ὶὲȟὯȿ‗ ‗ÌÏÇ‍ȟ ρ ‗ÌÏÇ
‍ȟ

В ‍ȟ
 

 

Where the term ÌÏÇ ȟ

В ȟ
 is called token’s lift. The higher 

the marginal probability of token ὲ over the corpus, the 

higher is its lift and the more exclusive a token is for a topic. 

With ‗ ρ, tokens of top relevance equals the top words, 

10 All results present herein pass this test, with a threshold of at least 
50% success rate. 



 

 

even if these do not show up exclusively in that particular 

topic. With ‗ π, tokens of top relevance are the ones ex-

clusive to the given topic. By varying ‗ɴ πȟρ and study-

ing the different resulting ranking of tokens, we get a good 

understanding of the words that contribute to a topic. Fol-

lowing the recommendation of Sievert & Shirley (2014) we 

fix ‗ πȢφφ in order to label them with an economic mean-

ingful name.11 

 

As climate finance is a very fragmented topic, we are inter-

est on understanding first which might be the big overarch-

ing areas of research that clearly appear in the literature, be-

fore going any further in granularity. Therefore, we start by 

estimating a model with three topics, because we want to 

grasp a big picture of overarching areas that drive the re-

search agenda in ML-based climate finance. In Table 1 we 

show the estimated vector ‍ per topic, as extracted from 

the LDA model. After inspection, we label each topic, being 

able to identify three overarching thematic areas. Topic 1 

could be matched with transition risk, including words re-

lated to carbon emissions, energy economics, and buildings 

efficiency. Then, we name topic 2 as physical risk, including 

references to flood (natural disasters), agricultural risk, cli-

mate change, crop performance and forests. Finally, inspect-

ing topic 3 we observe words linked to corporate & social 

responsibility, like ESG factors, (responsible) investing, 

companies’ performance, sustainability and risk. We show 

these results in the Appendix. 

 

Once we understand that ML is used in three big reasonable 

areas of research of climate finance we wonder whether we 

can locate narrower topics, in order to provide better field 

knowledge for future researchers. There is no easy way to 

find the optimal number of topics. The most commonly used 

statistical measures to determine an appropriate number of 

topics are the coherence score (Röder, 2014) and the statis-

tical perplexity during topic modelling (Blei, 2003). While 

increasing the number of topics usually improves these sta-

tistical measures during topic modelling, we must at the 

same time account for a higher computational cost of train-

ing the model as the number of topics increase, and more 

importantly, the complexity for a human to discern the eco-

nomic meaning of more topics will also increase. In the Ap-

pendix Figure 12, we plot the coherence score and the la-

tency of training during the estimation of up to 40 topics, 

and we evidence that the coherence finds a stable trend close 

to 15 topics. Following Zhao et al. (2015) we also compute 

the rate of change in perplexity (RCP), as a more suitable 

selector of the number of topics (see Appendix, Figure 13). 

This plot converges to a stable level around 5 to 10 topics. 

Observing this, we decide to estimate our LDA model with 

                                                 
11 Importantly, running a LDA model implies an iterative process, 
to find the optimal configuration. The more passes, increases the 
fitness of the model. In our case, the Gensim implementation, 
based on a Bayesian approach, finds the best configuration of the 
model automatically as well as several settings related to numerical 

10 topics, knowing that the ability of a human to label the 

economic meaning of the topics will be more challenging. 

At the end, we are able to label a total of 7 comprehensive 

and economically reasonable topics, having to discard 3 of 

them. We decide to stop here, as more granularity offered 

no further insights to human experts inspecting the tokens in 

too small topics. In Table 2 we show the newly estimated 

vector ‍ per topic (see Appendix). 

 

By inspecting these keywords, we can again initially label 

each topic, resulting this process in the following more gran-

ular research areas in climate finance that rely on ML-meth-

ods: (i) natural hazards, (ii) biodiversity, (iii) carbon mar-

kets, (iv) agricultural risk, (v) ESG factors & investing, (vi) 

energy economics, and (vii) climate data. We discard three 

topics because we find that their composition is either 

mainly comprised of methodological terms (e.g.: in topics 1 

and 3 we encounter tokens like “activ”, “correl”, “signific”, 

“algorithm”, “term”, “price”, “differ”, etc.) or repetitive 

with other topics (e.g.: in topic 5 we find concepts related to 

carbon markets like “emiss”, “carbon” and “soil”, but com-

mingled with low relevant tokens like “studi”, “result” and 

“forecast”. This, together with an investigation of the rele-

vance of this topic using λ=0.66 makes us discard it). At this 

stage we are interested again in checking the inter-topic dis-

tance, to confirm the link with our previous classification 

and how the three overarching thematic areas might break-

down in these reasonable more granular research themes. In 

Figure 4 we plot the visualization of the new clustering in 7 

meaningful topics. 

 

Figure 1. Visualization of topic 9 (Energy economics) 

 

 
 

From this previous picture, we first observe that topics 6 

(carbon markets) and 9 (energy economics) are indeed very 

close of each other, and might reflect a breakdown of the 

overarching area labeled before as Transition risk, as it is 

efficiency (Hoffman et al. 2010). In order not to stop at a local op-
timum we use a high enough number of iterations. Finding 3 topics 
is an easier task for the LDA model, so we find a stable result using 
only 100 passes. However, in order to find a higher number of 
(meaningful) topics we will need 40.000. 



 

 

suggested by the similarity of their principal components. 

Then, topics 8 (ESG factors & investing) and 10 (Climate 

data), again fall nearby one from each other, and reflect 

therefore correctly a breakdown of the previously named 

area Corporate & Social Responsibility. Finally, we dis-

cover that topic 7 (agricultural risk), topic 2 (Natural haz-

ards) and topic 4 (Biodiversity) cover a similar theme, being 

all of them connected to the previous area named Physical 

risk. 

 

Therefore, we successfully arrive after inspection of the rel-

evance scores of key tokens per topic to a meaningful un-

derstanding of the concepts covered by each topic. For in-

stance, using as example Figure 4 for Topic 9, in the right 

hand side panel, we find highly ranked (nearly) exclusive 

terms like “energi”, “emiss”, “carbon”, “ghg” or “green-

hous”, as well as overlapping terms like “predict”, “carbon”, 

and “build”. Varying the values of λ, we can easily label this 

topic as Energy economics, understanding this as a cluster 

of research paper dealing with ML to solve problems related 

to GHG emissions, air pollution, carbon price, energy fore-

casting, energy consumption and buildings efficiency. For 

further reference we leave in the Appendix the visualization 

of the remaining topics, being able to confirm that the label-

ing makes economic sense after inspection of the respective 

relevance rankings, which also we must highlight that allow 

us to fine-tune the final name of each topic in further detail. 

In the following Section we leverage on the granular classi-

fication of research areas to study key publication metrics in 

order to understanding potential knowledge gaps, emerging 

areas of interest and key ML methods that are being utilized. 

5. Publication Trends and Analysis 

Using the classification into topics that we found in the LDA 

analysis (both the classification into three topics and the 

more granular classification into seven topics) we show in 

the Appendix (Table 1) a descriptive summary of key statis-

tics of the corpus under scrutiny. From a total of 217 unique 

documents, Physical risks, Transition risks and CSR capture 

a similar share of total publications. However, Physical risk 

seems to be a more mature research area as the majority of 

publications are in peer-reviewed journals. This contrasts 

with other areas that seem to be emerging and relying still 

more on working paper format, especially two, Climate 

data, where more than half of the research articles gathered 

are still in not published in a journal, and ESG factors & 

investing, where notably close to half of the documents be-

long to this class. Further analysis is provided in the Appen-

dix, including a breakdown of ML methods used per topic. 

 

From our results, we are able to extract some stylized con-

clusions. First we observe that currently ML is applied for a 

majority of topics related to climate change in finance. For 

instance, we identify relevant studies covering five out of 

the seven topics listed in Kumar et al. (2021), which could 

serve as a benchmark survey describing the field of sustain-

able finance. Then, we show evidence on how climate fi-

nance researchers are broadening the use of ML. From being 

initially applied to solve physical risks problems, like 

weather and natural hazards forecasting, and issues related 

to energy economics, currently a relevant number of studies 

are using it for responsible investing, ESG factors and meas-

uring corporate’s compliance with climate data regulatory 

disclosures, although these latter areas are less mature, as 

shown by the ratios of peer-reviewed publications versus 

working papers. Interestingly, some ML models outstand 

within each field of interest. Overall, Random forests and 

Artificial Neural Networks are the mostly used ones, but for 

instance, climate data is heavily relying on Natural Lan-

guage Processing, and Corporate & Social Responsibility is 

still heavily relying on more traditional tools like Lasso/ 

Ridge and Elastic net regularization in multiple types of re-

gressions.  

6. Conclusion 

We aim to shed some light on the value of ML within cli-

mate finance, in order to understand its potential to drive in-

novative work in this knowledge area. To this purpose we 

assemble a corpus of relevant articles and we estimate a La-

tent Dirichlet Allocation model to uncover latent topics in 

the literature, finding three overarching areas and seven 

granular application domains which we are able to label with 

economic meaning that significantly describe where ML is 

being used within climate finance. To the best of our 

knowledge this is the first study that relies on Natural Lan-

guage Processing to survey this highly heterogeneous re-

search field, offering academics, market experts and policy 

makers a means to assess emerging topics, and promising 

thematic areas. We hope this will enable a profound 

knowledge of the field, aiding climate finance to scale up in 

order to become mainstream finance in the near future. 

 

As a bottom line, climate finance literature has been grow-

ing fast, and we have been able to demonstrate the im-

portance of ML in this field. We uncover up to seven re-

search topics that are coherent with current sustainable fi-

nance literature reviews, and illustrate the areas where ML 

is adding more value. For instance, climate data seems to be 

a novel area that is arising thanks to ML. We also identify 

topics like physical risk that remains mainly covered by en-

vironmental journals, while economic journals seem priori-

tize research on ESG and carbon markets, having therefore 

to acknowledge that the relevance of climate finance is still 

a work in progress in the top academic arena in economics.  
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Appendix 

Publication Trends and Analysis 

 

Table 1. Descriptive statistics of the corpus. 

  

 
 

 

Figure 2. Relative frequency of application domains, by 

topic classification 

 

 
 

Figure 3. breakdown of documents, by type of publica-

tion 

  
 

The emerging importance of some topics can be also con-

cluded from Figure 4 which shows the cumulative number 

of publications per year and topic. We highlight that Energy 

economics (gray line) is a highly covered area, showing 

sharp growth rates as well Carbon markets (yellow line) and 

ESG factors (orange line). Agricultural and extreme weather 

events is possibly the area with the most stable growth rate, 

indicating the reliance of researchers and experts on this ap-

plication domain of ML methods during the last years. 

 

 

 

 

 

Figure 4. Number of publications (cumulative) per year 

and topic 

 

  
 

Out of those publications that were published in journal for-

mat (totaling 136), we are able to classify them per type of 

science. We identify publications of ML-based climate fi-

nance in very heterogeneous knowledge domains, like jour-

nals from environmental sciences, computer sciences, or 

economics and finance journals. In Figure 5 we plot this 

breakdown, concluding that Economic and Finance journals 

still pay more attention to topics related to CSR and Transi-

tions risks, lagging behind other scientific journals that pub-

lish more work on Physical risk and its socio-economic im-

pact.  

 

Figure 5. Breakdown of publications by type of science 

 

 
 

Finally, we are interested in investigating which are the most 

used ML models per topic, in order to provide valuable in-

sights to experts willing to look into new fields where this 

tools are been successfully useful. In Figure 6 and 7 we 

show the breakdown for Physical and Transition risks. Very 

interestingly in Physical risk we appreciate a strong usage 

of image recognition tools, usually associated with the need 

to handle newly available (unstructured) data from remote 

sensing, text, and satellites. Following this method both 

Random forests and Artificial Neural Networks are widely 

used in this field of research. However, in Transition risks, 

Artificial Neural Networks dominate within our subset of 

documents, but can highlight that a relevant share of studies 

in this domain still use more traditional techniques like 

Lasso and other penalized-type regressions.  
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Figure 6. Type of ML model used in Physical risk 

 

 
 

Figure 7. Type of ML model used in Transition risk 

 

 
In Figure 8 we show the models predominantly used in 

CSR. Two facts are important to highlight, first that the am-

ple dispersion of methods used in CSR; and secondly, the 

strong the strong reliance in Natural Language Processing 

tools, clearly strongly used by studies focusing on how to 

extract and report climatic data. 

 
 

Figure 8. Type of ML model used in CSR 

 

 
To conclude, we extract one further interesting insight. In all 

the three overarching areas of research post-hoc interpreta-

bility techniques are starting to be used, gaining a relevant 

share in all these application domains, in line with recent 

advances in the academic field of Explainable AI. This trend 

goes in parallel with its gaining traction in several other ar-

eas of mainstream finance like risk management, both at ac-

ademic level (see Albanesi & Vamossy 2019, or Watcher et 

al. 2017, for example) and within financial supervisors and 

regulators, as illustrated in IIF (2020), EBA (2021), 

Akinwumi et al. (2022), Dupont et al (2022), Bafin (2022), 

or Alonso & Carbó (2022). 
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Figure 9. Coherence score, and latency of training 

LDA.  

 
 

 

Figure 10. Rate of Change in Perplexity, and latency of 

training LDA.  
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Green AI 

Recently artificial intelligence has encountered such dra-

matic progress that it is seen as a tool of choice to solve en-

vironmental issues, such as greenhouse gas emissions 

(GHG). At the same time the ML researchers began to real-

ize that training models with more and more parameters re-

quired a lot of energy and as a consequence GHG emissions, 

questioning the complete environmental impacts of AI 

methods for the environment (see Schwartz et al. 2020). 

Based on this concern, Ligozat et al. (2021) propose to study 

the possible negative impact of AI systems often presented 

as a solution to climate change, presenting different meth-

odologies used to assess this impacts, in particular life cycle 

assessment. For instance, recent advances in large Trans-

former models have been taking seriously into consideration 

their environmental footprint at the time of designing and 

developing the models (see Zhang et al. 2022b).  

 

However, as we are seeing in our study, a large variety of 

ML methods are used in Climate Finance, making sense to 

extend the concern on the environmental footprint of ML 

more broadly. Strubell et al. (2019) in a pioneer paper esti-

mated the consumption of large NLP models, comparing it 

in CO2 equivalents with illustrative general life examples. 

They conclude that training a big Transformer with neural 

architecture search can emit up to six times what a car pro-

duces (including fuel) in its lifetime.  Therefore, the authors 

recommend to grant researches equitable access to compu-

tation resources, and suggest to prioritize computationally 

efficient hardware and algorithms. In Strubell et al. (2021) 

they extend their work to modern language models like 

BERT, or GPT-2. 

 

Overall, a common conclusion is that we need accurate re-

porting of energy and carbon usage. It is essential for under-

standing the potential climate impacts of ML research to in-

centivize responsible research. To this purpose, Henderson 

et al. (2021) introduce a framework that makes this easier 

by providing a simple interface for tracking ML models’ 

real-time energy consumption and carbon emissions, mak-

ing carbon accounting easier. Lacoste et al. (2019) present 

as well a Machine Learning Emissions Calculator as a tool 

for researches to better understand the environmental impact 

of training their models. In a position paper Schwartz et al. 

(2020) advocates a practical solution by making efficiency 

an evaluation criterion for research alongside accuracy and 

related measures, like Hershcovich et al. (2022) who pro-

pose a climate performance model card with the primary 

purpose of being practically usable with only limited infor-

mation about experiments and the underlying computer 

hardware, in order to increase awareness about the environ-

mental impact of NLP research. 

 

A big challenge remains on new methods being currently 

develop to achieve a trustworthy and scalable ML. For in-

stance, challenges like model interpretability require com-

putationally expensive ad-hoc techniques like SHAP 

(Alonso & Carbó, 2022), or the cost of differential privacy 

is often a reduced model accuracy and a lowered conver-

gence speed producing a higher carbon footprint due to ei-

ther longer run-times or extensive experiments (Tornede et 

al. 2021). Similarly, this happens with Automated ML (Au-

toML), a discipline that provides methods and processes to 

make ML available for non-Machine Learning experts, 

where this problem is amplified due to large scale experi-

ments conducted with many datasets and approaches, each 

of them being run with several repetitions to rule out random 

effects (Naidu et al. 2021). 

  



 

 

Clustering results: 3 thematic areas 

 
Figure 11. Visualization of Topic 2 (physical risk) 

 

 
 

Figure 12. Visualization of Topic 2 (physical risk) 

 

 
 

 

Figure 13. Visualization of Topic 3 (corporate & social 

responsibility) 

 

 
 

 

 

 

 

Clustering results: 7 granular application domains 

 

Figure 14. Visualization of topic 6 (carbon markets) 

 

 
 

Figure 15. Visualization of topic 8 (ESG factors & invest-

ing) 

 

 
 

Figure 16. Visualization of topic 10 (Climate data) 

 

  
 

 

 

 

 

 



 

 

Figure 17. Visualization of topic 4 (Biodiversity) 

 

 
 

 

 

Figure 18. Visualization of topic 2 (Natural hazards) 

 

 
 

 

Figure 19. Visualization of topic 7 (Agricultural risk)  

 

 
 


